PLANETLAB

Using PlanetLab for Network Research:
Myths, Realities, and Best Practices

Larry Peterson, Vivek Pai
Princeton University

Neil Spring
University of Maryland

Andy Bavier
Princeton University

PDN-05-028
June 2005

Status: Final Version.

Using PlanetLab for Network Research:
Myths, Realities, and Best Practices

Larry Peterson, Vivek Pai, Neil Spring, and Andy Bavier

June 29, 2005

PlanetLab is designed to be used by a wide range of network services and experi-
ments. There are 428 slices running on PlanetLab (June 2005), and there are likely
just as many different perceptions about what PlanetLab does and does not pro-
vide as a network platform. Some of these perceptions are true, some were true
but are no longer valid, and some depend on researchers applying best practices.
This report identifies some of these perceptions, discusses whether they are myth
or reality, and describes best practices that can be applied to make PlanetLab as
effective a research platform as possible.

Perception: PlanetLab is not suitable for reproducible results.
Verdict: Reality.

PlanetLab was never designed to be used for controlled experiments. It was de-
signed to subject network services to real-world conditions. By running a service
for months or years, researchers should be able to identify trends and understand
the range of performance and reliability properties their service achieves. Any ex-
periment that runs only for an hour will reflect only the conditions of the network
(and PlanetLab) during that hour.

Various aspects of a service can be measured, of course, by avoiding heavily loaded
times, using one of the available brokerage services (see below) to secure suffi-
cient resources, and repeating each experiment often enough to generate statisti-
cally valid results.

Perception: High load prevents accurate latency measurements.
Verdict: Myth, if best practices are used.

Because PlanetLab machines are heavily loaded, no application can expect that
a call to gettimeofday () right after recv () will return the time when the
packet was received by the machine. Using in-kernel timestamping features of
Linux, however, network delay can be isolated from (most) processing delay.

When a machine receives a packet, the network device sends an interrupt to the
processor so that the kernel can pull the packet from the device’s queue. At the
point when Linux accepts the packet from the device driver, it annotates the buffer
with the current timeﬂ The kernel will return control to the current process for
the remainder of its quantum, but this timestamp is kept in the kernel and made
available in at least three ways:

1. The SIOCGSTAMP ioctl called after reading a packet gives the timestamp
of the last packet. Code to use this ioctl is part of ping, but Linux kernel
comments suggest the call is Linux-specific.

2. The SO_TIMESTAMP socket option combined with recvmsg (), in which
the ancillary data includes a timestamp. The Spruce [5] receiver code uses
this method. This approach may also be Linux-specific and is not widely
documented, but can be run as a non-root user.

3. The library behind tcpdump, libpcap, gets these timestamps on the socket it
uses to see all packets. This is the most portable option, but requires that
you be root, which is easy on PlanetLab. The libpcap library has the added
advantage that sent packets are also timestamped [6]].

There is one reality, however: sending packets at precise times is more difficult,
but still quite possible with some adjustments. Although PlanetLab nodes are of-
ten heavily loaded, processes that need to send packets at specific times can also
measure when they have control of the processor. If the process is willing to dis-
card measurements where the desired sending times were not achieved, then send-
ing rate-paced data on PlanetLab simply requires more attempts than on unloaded
systems.

To determine how load impairs the ability to send precisely, we measure how often
we are able to send precisely-spaced packets in a train. Sent trains consist of eleven
packets, spaced either by 1 ms, to test spin-waiting, or 11 ms, to test sleep-based
waiting. We show how often the desired gaps were achieved for 1 ms gaps in

ISee: linux/net/core/dev.c:netif rx().

100 T T T T T
BQW\MW)
g
g 60 ,
S 40 .
L
20 .
0 | | | | |
0 20 40 60 80 100 120

Days since Feb 20, 2005

Figure 1: Timing statistics for 1 ms (spin-based) chirp trains. The green (upper)
line indicates at least 5 consecutive gaps met the target timings, while the blue
(lower) line indicates all gaps met the target.

100

80 : |

60 .

40 : -

% of trains

20 .

0 I I I I I
0 20 40 60 80 100 120

Days since Feb 20, 2005

Figure 2: Timing statistics for 11 ms (sleep-based) chirp trains. The green (upper)
line indicates at least 5 consecutive gaps met the target timings, while the blue
(lower) line indicates all gaps met the target.

Figure[I] and show 11 ms gaps in Figure 2] These packet spacings were achieved
using spin loops for the 1 ms gaps, and the nanosleep () system call (via the
usleep () library call) for the 11 ms gaps. In all measurements, 10 gaps are
used, and we measure how often the gaps are within 3% of the target either for all
10 gaps, or for any 5 consecutive gaps.

For both tests, at least five consecutive gaps have the desired intervals in 80-90%
of the trains. For the 11 ms test, all 10 gaps had the correct timing 60—70% of the
time. The 1 ms test did not fare as well: all 10 gaps met their target times in only
20-40% of the trains. For the shorter (5-gap) chirp trains, the results are quite good:
sending 10 packets is sufficient to discard less than 20% of the measurements. For
longer chirp trains, two to five times as many probes may have to be sent, but this
overhead may be tolerable for many experiments.

Mechanisms for negotiating temporarily longer time slices or delegating packet
transmission scheduling to the kernel are being discussed on PlanetLab’s arch mail-
ing list.

Perception: The PlanetL.ab AUP makes it unsuitable for measurement.
Verdict: Myth, if best practices are used.

The PlanetLab user Acceptable Use Policy [3] states:

PlanetLab is designed to support network measurement experiments
that purposely probe the Internet. However, we expect all users to
adhere to widely-accepted standards of network etiquette in an effort
to minimize complaints from network administrators. Activities that
have been interpreted as worm and denial-of-service attacks in the past
(and should be avoided) include sending SYN packets to port 80 on
random machines, probing random IP addresses, repeatedly pinging
routers, overloading bottleneck links with measurement traffic, and
probing a single target machine from many PlanetLab nodes.

This policy is a result of experience with network measurements on PlanetLab, and
is designed to prevent complaints of the form “PlanetLab is attacking my machine.”
Here we elaborate on steps to conduct responsible Internet measurement on Pla-
netLab. The goal of these practices is to make network measurements as easy to
support as possible by building a list of hosts that “opt-out” of measurement with-
out growing the list of PlanetLab sites that have requested to “opt-out” of hosting
measurements.

Have recognizable traffic. Send packets with a consistent, uniquely-identifying
source or destination port. This will make it easy to recognize traffic that is part of
your experiment from the first email.

Test locally. Do not use PlanetLab to send traffic you wouldn’t send from your
home institution. Use a machine at your home institution first, so that if there are
problems with your tool, you may discover them without causing network-wide
disruption.

Alert PlanetLab support. Go beyond updating your slice descriptionﬂ send a
message to PlanetLab support detailing your intended measurement, how to iden-
tify its traffic, and what you’ve done to try to avoid problems. Occasionally the
interface that traces packets back to their owners breaks; helping support avoid
that saves them valuable time.

Start slow. Measurement run from PlanetlLab can easily look like a distributed
denial of service attack; starting with a few machines reduces the number of sites
that receive complaints about denial of service attacks.

Use Scriptroute. Scriptroute exists as a layer for separating measurement logic
from low-level details of measurement execution. It will prevent you from contact-
ing hosts that have complained about traffic previously, can prevent inadvertently
invalid packets that trigger intrusion detection systems, will limit the rate of mea-
surement traffic sent, collects pcap-derived timestamps, and schedules probes using
a hybrid between sleeping and busy-waiting. Scriptroute includes a tool for collect-
ing the tree of paths from all PlanetLab nodes to a destination, using as few probes
as possible; using this tool, you can traceroute from everywhere to a destination
without looking like a distributed denial of service attack.

Curtail ambition. It is tempting to demonstrate implementation skill by running
a measurement study from everywhere to everywhere, using many packets to get
as accurate a result as possible, and using TCP SYN packets to increase the chance
of discovering properties of networks behind firewalls. Resist! Overly-aggressive
measurement increases the cost of the measurement and risk in reputation for only
a marginal benefit to the authority of your result.

Perception: PlanetLab is too heavily loaded to be usable.
Verdict: Myth; once true, but not today.

While PlanetLab is likely to be chronically under-provisioned, and load can be
especially high just before conference deadlines, this perception is misleading in
two ways.

To update your slice description, visit: https:/www.planet-lab.org/db/slices/select_slice.php?
dest=update_desc.php

https://www.planet-lab.org/db/slices/select_slice.php?dest=update_desc.php
https://www.planet-lab.org/db/slices/select_slice.php?dest=update_desc.php

B a1
o o
|

w
o
|

Capacity
= N
o o
éé
| |

| | |
0 20 40 60 80 100 120
Days since Feb 20, 2005

o

Figure 3: Available CPU across PlanetLab nodes. Median percentage available
CPU is red (upper), 25th percentile is green (middle), and 10" is blue (lower).

First, PlanetLab now has two brokerage services (Sirius and Bellagio) that perform
admission control to a pool of resources. Researchers can use these services to
receive more than a “fair share” of the CPU—for fixed periods of time—during
periods of heavy load.

Second, recent upgrades to the OS have made the system behave much better than
when PlanetLab was first deployed. For example, CPU usage is charged to slices
rather than threads, meaning that a slice with 100 threads no longer receives 100
times the CPU capacity as a slice with one thread; both slices now receive an equal
share of the CPU. This often means the Unix-reported load average is misleading:
a load of 100 means there are 100 runnable threads, but a slice with 99 runnable
threads receives the same CPU allocation as a slice with only 1.

Also, PlanetLab’s ability to police and kill slices that are using an excessive amount
of memory has forced programmers to be careful about memory consumption, re-
ducing memory pressure for everyone. Finally, an OS upgrade has allowed the
system to use DMA for disk I/O rather than programmed I/O. This has been espe-
cially important when the node is swapping.

Experiments conducted during the run-up to the SIGCOMM deadline support the
claim that PlanetLab has sufficient CPU capacity. Specifically, 360 of the 362
nodes (99%) running during the week of February 1-8, 2005 had an average of at
least 10% of their processors available; 328 of the 360 nodes (91%) had at least
20% available. The processors certainly had a high load during this period (often
exceeding 100), but a slice that wanted to consume its fair share of the CPU dur-
ing this period would have received at least an average of 10% on virtually all of
PlanetLab’s nodes.

Capacity
N w Iy al
o o o o
T
| | |

=
o
T
|

| | | |
20 40 60 80 100 120
Days since Feb 20, 2005

o

o

Figure 4: Median available CPU measurements using spin loops (blue, upper), load
average (green, middle), and number of active slices (red, typically lowest).

This trend holds true across longer periods as well, as shown in Figure[3] The three
lines are the median, 25", and 10"* percentiles of the available capacity across
all nodes. Over this period, the majority of nodes showed at least 20% available
capacity, while less than one-fourth had less than 10% free. Because of PlanetLab’s
fair scheduler, this approach presents a more realistic estimate of capacity than
standard techniques, such as the load metric reported by top. For comparison, in
Figure[d we show the median capacities as measured directly using spin loops, via
the inverse of the load average, and the inverse of the number of active slices. The
top line, the true capacity, is significantly higher at almost all times. The reason
for this difference is simple: not all active slices use their entire quanta, so the
active slice count can give an inflated estimate. Likewise, slices that spawn many
processes will increase the load average, but their processes only compete against
each other for a fair share of the processor.

Perception: PlanetLab cannot make resource guarantees to slices.
Verdict: Myth; once true, but not today.

Resource guarantees could not be given before Version 3.0. Schedulers and other
mechanisms are now available to make resource guarantees, but we do not yet have
a policy about what slices should receive such guarantees. Typically, continuously
running services on PlanetLab are robust to varying resource availability (and have
not asked for guarantees), while short-term experiments have the option of using
one of the admission control mechanisms (see previous item) to ensure they receive
sufficient capacity for the duration of a run. Once we have enough experience to
understand what guarantees make sense from a policy perspective, or someone

develops a robust market in which users can acquire resource guarantees, resource
guarantees are likely to become commonplace.

Perception: PlanetLab is not representative of the Internet.
Verdict: Reality; but what is representative of the Internet?

Exactly what it means to be representative of the Internet is an open and interesting
research question. A good definition could help drive node placement in the future,
and help researchers select which existing nodes they want their slice to run on.
Until there is a widely-accepted definition, all results needs to interpreted according
to the service’s or experiment’s sensitivity to various network properties.

Statements about PlanetLab not being representative of the Internet are usually
taken to mean that too many of PlanetLab’s nodes are connected to Internet2, or
more generally, the global research and education network (GREN) [1]. While
there have been modest improvements as commercial sites join PlanetLab and re-
search sites connect machines to DSL and cable modem links (26 sites are purely
on the commercial Internet), it remains the case that most PlanetLab sites are on the
GREN. The question we need to address is how PlanetLab’s network connectivity
affects research. Consider the following examples.

Research that claims some new routing technique is able to find better routes than
BGP are suspect if those better routes take advantage of well-provisioned research
networks. On the other hand, claims that a service can find the best available
route—as opposed to finding a better route than BGP—might be accurate even
when running on the GREN.

Research that uses PlanetLab as a platform for observing the behavior of the rest of
the Internet is not particularly handicapped by having to make those observations
from the GREN. This is because the 60% of the autonomous systems that host
PlanetLab nodes are either transit ASes (e.g., PlanetLab has multiple nodes on
FASTNET) or multihomed ASes (e.g., they peer with both Internet2 and some
commercial ISP). Of course, the other 40% are also able to reach the commercial
Internet, but generally through a single intermediate AS. Packets destined to non-
GREN sites are always routed over the commercial Internet, with PlanetLab nodes
communicating with an average of 565,000 unique IP addresses a day. The bottom
line is that measurement services like Scriptroute [4] have sufficient vantage points
from which the full Internet can be probed.

Network services that attract real users—including users not at a current PlanetLab
site—are also not unduly limited by PlanetLab’s current topology. Moreover, this

traffic can be the source of even greater information about network behavior. For
example, by watching TCP connections between CoDeeN nodes at PlanetLab sites
and Web clients/servers throughout the Internet, PlanetSeer was able to observe
traffic traversing 10,090 ASes, including all tier-1 ISPs, 96% of the tier-2 ISPs,
roughly 80% of the tier-3 and 4 ISPs, and even 43% of the tier-3 ISPs [7]].

Finally, it is sometimes not the topology of the GREN that is most problematic,
but it is the availability of unreasonably high bandwidths that calls results into
question. We note, however, that slices are free to limit bandwidth they consume
to emulate a lower bandwidth link.

Perception: PlanetLab is not suitable for peer-to-peer networks.
Verdict: Myth?

This is partly a different way of saying that PlanetLab is too I12-centric (e.g., it does
not include enough DSL links), but it also highlights the point that PlanetLab is a
managed infrastructure, and so not subject to the same churn as desktop systems
(see next item).

One view is that while PlanetLab is not equivalent to a set of desktop machines
and it is not expected to scale to millions of machines—it is suitable as a “seed”
deployment for a P2P service. This “seed deployment” allows researchers to show
the value of their service and encourage end-users to load the service on their desk-
top machine. Similarly, PlanetLab nodes might be viewed as the “super nodes” of
a P2P network. End System Multicast uses PlanetLab in this way [2].

Perception: PlanetLab experiences excessive churn.
Verdict: Myth; if best practices are used.

Major software upgrades aside, roughly 30% of PlanetLab’s nodes are down at
any given time. Roughly one-third of these are down for several weeks, usually
because a site is upgrading the hardware or blocking access due to an AUP or
security issue. The remaining failed nodes are part of the daily churn that typically
sees 15-20 nodes fail and an equal number of nodes recover on any given day.

There have been three times during the last two years when many PlanetLab nodes
were down: (1) a security incident in December 2003 caused all the nodes to be
taken off-line for a week, during which time we also upgraded the system from
Version 1.0 to Version 2.0; (2) an upgrade from Version 2.0 to Version 3.0 during
November 2004 caused more churn than usual for a two week period; and (3) a

| | |
0 50 100 150 200 250 300
Days since August 12, 2004

Figure 5: Median uptime in days across all PlanetLab nodes.

kernel bug in February 2005 took many nodes off-line for a weekend. Figure [3]
shows that median uptimes are primarily affected by these testbed-wide events.
Median uptimes are generally higher than 5 days, and often approach 15 to 20
days—much higher than what would be expected in typical home systems.

Given any churn, no users should expect that the storage offered by PlanetLab
nodes is persistent, or that any set of machines, once chosen, will remain opera-
tional for the duration of a long-running experiment.

References

(1]

(2]

(3]

[4]

[5]

S. Banerjee, T. G. Griffin, and M. Pias. The interdomain connectivity of Pla-
netLab nodes. In Proceedings of Passive & Active Measurement (PAM), pages
73-82, Antibes Juan-les-Pins, France, Apr. 2004.

Y. Chu, S. G. Rao, and H. Zhang. A case for end system multicast. In Proceed-
ings of the ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, June 2000.

PlanetLab Consortium. Planetlab acceptable use policy (AUP). https://www.
planet-lab.org/php/aup/PlanetLab_AUP.pdf, Feb. 2004.

N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A public Internet mea-
surement facility. In Proceedings of the USENIX Symposium on Internet Tech-
nologies and Systems (USITS), pages 225-238, Seattle, WA, Mar. 2003.

J. Strauss, D. Katabi, and F. Kaashoek. A measurement study of available
bandwidth estimation tools. In Proceedings of the ACM SIGCOMM Internet
Measurement Conference (IMC), pages 39—44, Miami, FL, Oct. 2003.

10

https://www.planet-lab.org/php/aup/PlanetLab_AUP.pdf
https://www.planet-lab.org/php/aup/PlanetLab_AUP.pdf

[6] TCPDUMP.org Frequently Asked Questions. http://www.tcpdump.org/faq.
html, July 2001.

[7] M. Zhang, C. Zhang, V. Pai, L. Peterson, and R. Wang. PlanetSeer: Internet
path failure monitoring and characterization in wide-area services. In Sym:-

posium on Operating Systems Design and Implementation (OSDI), San Fran-
cisco, CA, Dec. 2004.

11

http://www.tcpdump.org/faq.html
http://www.tcpdump.org/faq.html

	cover-05-028.pdf
	028_myths.pdf

