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1 Introduction

This document goes into some detail in justifying its own existence. If you’re sold on the idea and want to
cut to the chase, read section 5, followed by 7.

Sensors are our name for the abstraction used by many distributed query processors or management systems
for the sources of their data. Sensors encapsulate raw observations that already exist in many different
forms, from kernel parameter settings exported through the /proc file system, to status information reported
through various commands and system calls (e.g., uptime, ping, and traceroute). A sensor might also
generate new information from a combination of existing sources.

This document came about because of the number of distributed query processors the authors were aware
of which were about to be deployed on PlanetLab: at the very least PIER [4], Sophia [9], IrisNet [7], and
TAG [5], and probably Astrolabe [8]. In addition, systems like InfoSpect are already deployed and in daily
use.

It is clearly a Good Thing if the data generated on a PlanetLab node can be shared between query processors.
Some of this data is generated so trivially (for example, the node’s current IP address) that it isn’t worth
coming up with an abstraction for providing it: clients can simply read it from the kernel. However, many
sources of data (such as a service which measures ping times to other nodes, or one that logs connection
requests to the node) need to be abstracted behind an interface, for at least one of the following reasons:

• privilege is required to generate the data, but not all the potential clients have (or should have) the
required privilege,

• it is expensive to replicate the process by which the data is generated - it is better to have one process
generate it and share the result,

• the data cannot be generated multiple times, and so some process is required to duplicate it for each
client

Some kind of (possibly trivial) server for a given sensor is therefore needed. We briefly considered using
the filing system for this purpose: sensors simply write their data into files which clients can read. We
rejected this idea because in the future evolution of the PlanetLab kernel filing systems might vary between
slices on a node, which might not even be running the same operating system. Consequently, we opted for
a networking-based model where clients connect to sensors via the local IP loopback interface.

The scheme we propose here is intended to be flexible, extensible, and as much as possible avoid getting in
the way of what people might want to do, while providing enough structure to make interoperability work.
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It’s also motivated from an ease-of-programming point of view, bearing in mind also that the data returned
by most sensors is expected to be very simple and unprocessed at this level.

2 Definitions

We start by defining a few terms. These should not come as too much of a surprise:

Sensor: A sensor provides a particular kind of information. Sensors are local to nodes: they provide infor-
mation derived locally.

Client: A client of a sensor is some application which requests the sensor data and hopefully makes use of
it. An example might be a particular capsule of a distributed query processor running on a node. This
document is about the interface between clients and sensors.

Sensor server: A sensor server aggregates several sensors at a single access point. To obtain a sensor
reading, a client makes a request to a sensor server. Sensor servers exist for a number of reasons: they
multiplex lots of sensors onto a single access point, they provide controlled sharing of sensors among
many clients, and they can, if need be, act as a security monitor to mediate access to sensor data.

Tuple: Each sensor outputs one or more tuples of untyped data values. Every tuple from a sensor conforms
to the same schema. Thus a sensor can be thought of as providing access to a (potentially infinite)
database table.

3 Data Model

Tuples.

4 Snapshot and Streaming Sensors

Sensor data can arrive in different ways. It may be

Push, pull, history, snapshot. Parameterisation (query).

We divide sensor semantics into two types, snapshot and streaming.

4.1 Snapshot sensors

Snapshot sensors maintain a finite size table of tuples, and immediately return the table (or, conceivably,
some subset of it) when queried for it. This can range from a single tuple which rarely varies (e.g. “number
of processors on this machine”) to a circular buffer which is constantly updated, of which a snapshot is
available to clients (for instance, “the times of 100 most recent connect system calls, together with the
associated slices”).

Using a notation we just made up, we can write:

time ← uptime()
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or, at the risk of too much notation:

time ←1 uptime()

- to indicate that the uptime sensor returns 1 tuple, which is a single value. Similarly,

min, max, median ←n node pings()

- indicates that node pings returns an indeterminate number of tuples, each of which consists of three
values.

4.2 Streaming sensors

Streaming sensors follow more of an event (or “push”) model, and deliver their data asynchronously, a tuple
at a time, as it becomes available. A client connects to a streaming sensor and receives tuples until either it
or the sensor server closes the connection. Hence:

src, dest, sport, dport, proto � rx packets()

- denotes a streaming sensor which delivers information about packets received at a node, formatted as a
five-tuple.

5 Syntax and Protocol

A sensor is accessed via a sensor server using HTTP [3].

Motivation: HTTP is a simple, well-understood protocol. For our purposes, most of the com-
plexity of HTTP can be ignored. HTTP libraries and utilities exist for practically all modern
programming languages. HTTP is easy to debug, particularly on a single machine.

5.1 Sensor URIs

A sensor is addressed using a uniform resource identifier (URI) of the form:

http://127.0.0.1: port / sensorname
[

extension
] [

? arguments
]

The port identifies the sensor server and the sensorname identifies the sensor. A sensor may be optionally
parameterized by either an extension or a list of arguments. An extension is simply an ordered list of
elements separated by slashes. Arguments are unordered assignments of values to names and are separated
by either ampersands or semicolons. Here are some example sensor URIs:

http://127.0.0.1:54321/uptime

http://127.0.0.1:54321/uptime?UNITS=DAYS

http://127.0.0.1:54321/interrupts/bus1/device3

Additional points about sensor URIs:

• The sensorname, extension, and arguments are case sensitive.

• Consecutive slashes are not allowed in the URI. The exception is that a double slash is allowed
following the HTTP protocol identifier (i.e., http://).
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• The sensorname and extension are encoded per RFC2396 [2]. (The reserved characters, “%;/?:@=&+$,”
are replaced by a percent sign followed by two hexadecimal digits corresponding to the US–ASCII
code of the character.)

• The field names and values within the arguments are encoded as x-www-form-urlencoded [1].
This means spaces are replaced with “+” and reserved characters are escaped in the same manner as
the sensorname and extension.

• Consecutive ampersands are not allowed in the URI.

5.1.1 Reserved URIs

The following URIs are reserved:

http://127.0.0.1: port /
This form (i.e., no sensorname) generates a text/plain response containing a list of available sen-
sors (one per line).

http://127.0.0.1: port / sensorname /README
This form generates a text/plain response containing documentation about the sensor. It could be
as simple as an e-mail contact of the author, a URL for a web page, or a man page.

http://127.0.0.1: port /README
This form generates a text/plain response containing documentation about the sensor server.

5.2 HTTP/1.1 Subset

Within the actual protocol of HTTP we are not implementing most of the optional features. To support
debugging with browsers, servers should respond with appropriate status codes per RFC2616.

• Servers only implement the GET and HEAD methods.

• Clients requests need only contain the following fields: Host, Connection, and User-Agent.

• Ranges are not supported.

• Client requests should not contain an entity-body.

• Persistent connections are not supported.

• A normal server response will include the following headers: Connection, Content-Length,
Content-Type, Date, Last-Modified, and Server.

• Streaming sensors use chunked transfer coding and must include a Transfer-Encoding: chun-

ked header line and must not include a Content-Length header. Trailing headers are not supported.

Appendix A contains additional details.
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5.3 Cache Control

For now, we do not take advantage of the caching model in HTTP/1.1. Because the distributed query
processors are likely to cache information obtained from sensors, it may be advantageous (in the future) to
use server-specified expiration to inform the distributed query processors when they should request fresh
data from the sensors.

5.4 Example Request / Response Pair

The request:

GET /uptime/ HTTP/1.0
Connection: close
User-Agent: Sophia/1.02
Host: 127.0.0.1:33080

The response:

HTTP/1.1 200 OK
Date: Mon, 17 Mar 2003 21:56:10 GMT
Server: Kernel_Sensors/0.03
Last-Modified: Mon, 17 Mar 2003 21:56:10 GMT
Accept-Ranges: none
Content-Length: 8
Connection: close
Content-Type: text/plain; charset=iso-8859-1

539220

Note that the Content-Length includes the trailing CRLF. Also note that HTTP requires that each line of
the header be terminated by CRLF.

5.5 Response Body

When feasible, sensor servers should be designed such that the response body is a (possibly empty) list of
tuples in comma-separated-value (CSV) format using the ISO-8859-1 character set (that is, text/plain;
charset=iso-8859-1). See Appendix B for a description of the CSV format.

If it is not feasible to use CSV format (e.g., for binary data or highly structured data), then XML [6]
(text/xml; charset=utf-8) or binary (application/octet-stream) is acceptable.

Motivation: CSV values are untyped and much to parse than more baroque formats such as
ASN.1, XDR, and XML. The lack of structure beyond a simple tuple list is not much of an issue
in sensors, since the idea is to keep the data as raw as possible and push as much semantic
processing as possible out of the sensor and into the client query processor.
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6 Naming and Discovery

Sensors are effectively addressed by a combination of name and port; a port number on 127.0.0.1 addresses
a sensor server. The discovery of sensors (how a client gets hold of a port and/or name) is out of scope of
this document, as is the discovery of what parameters a sensor understands, and whether its output is in the
form of a stream or finite table.

Instead, we offer some suggestions here for how parts of this problem may be addressed:

• The documentation for a sensor implementation should describe which parameters are understood,
how they are interpreted, what defaults exist, and the intended interpretation of the output. In addition,
the documentation should state whether the results are a stream or finite table (or single tuple).

• Some sensors or sensor servers may exist on well-known ports and/or with well-known names.

• A name service (service discovery service, trader, portmapper, whatever) can be used to lookup locally
available sensors on the basis of some search specification or constraint set. Such a service would need
sensors to register with it. The interface to such a service might be a sensor itself.

• A sensor server might offer a “meta-sensor” with a well-known name, which gives details of all
sensors offered by the server on that port.

7 Examples

Sensors encapsulate raw observations that already exist in many different forms, from kernel parameter
settings exported through the /proc file system, to status information reported through various commands
and system calls (e.g., uptime, ping, and traceroute). A sensor might also generate new information
from a combination of existing sources.

This section gives several example sensors that one might implement to the interface defined in the previ-
ous section. When implementing sensors, the key design issues are (1) how to aggregate a set of related
sensors into a single sensor server, and (2) at what level should a single sensor expose (or synthesize) raw
information.

7.1 Kernel Sensors

One obvious sensor server reports various information about kernel activities. The various sensors exported
by this server are essentially wrappers around the /proc file system. For example, we have already imple-
mented the following set of sensors, expressed using notation I just made up:

memtotal, memfree, memused ← meminfo(): returns information about current memory us-
age; implemented as a wrapper around /proc/meminfo.

load ←1 load(): returns 1-minute load average; implemented as a wrapper around /proc/loadavg,
returning the first value.

load ←1 load5(): returns 5-minute load average; implemented as a wrapper around /proc/loadavg,
returning the second value.
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load ←1 load(): returns 15-minute load average; implemented as a wrapper around /proc/loadavg,
returning the third value.

time ←1 uptime(): returns uptime of the node in seconds; implemented as a wrapper around /proc/uptime.

rate ←1 bandwidth(slice): returns the bandwidth consumed by a slice (given by a slice id);
implemented as a wrapper around /proc/scout.

These examples are simple in at least two respects. First, they require virtually no processing; they simply
parse and filter values already available in /proc. Second, they neither stream information nor do they
maintain any history. One could easily imagine a variant of bandwidth, for example, that both streams the
bandwidth consumed by the slice over that last 5 minute period, updated once every five minutes, or returns
a table of the last n readings it had made.

7.2 Registry Sensors

Our second example sensor server reports registry information about the PlanetLab nodes. This information
is periodically updated (perhaps once per day) from the PlanetLab Network Operations Center (NOC).

siteID←n sitelist(): returns the list of PlanetLab sites.

nodeID←n nodelist(siteID): returns the list of PlanetLab nodes at a given site.

siteName,latitude,longitude,country← siteinfo(siteID): returns information about a given
site.

ipAddr,dnsName,nodeType,revision ← nodeinfo(nodeID): returns information about a given
node. The nodeType may indicate if this is a normal, alpha, or beta node; the revision may
indicate the revision of the PlanetLab kernel running on the node.

7.3 Topology Sensors

Our third example sensor server reports information about how the local host is connected to the Internet.
The example illustrates sensors that require more complex and expensive implementations; some send and
receive messages over the Internet before they can respond, and some cache the results of earlier invocations.
The example also illustrates how the same raw information might be exposed through multiple sensors.

graph ← getgraph(resolution, scope): returns a map of the Internet (an adjacency list)
at some resolution (possible values are AS-Level, Router-Level, and Physical-Level), over
some scope of the Internet (possible values are Root, AS, and Network). Currently, only resolution
AS-Level and scope Root are supported, and it is implemented using feeds from a collection of BGP
routers.

path ← getpath(node1, node2, resolution): returns a path between a pair of nodes (given
by IP addresses) at some resolution (same possible values as for getgraph). When node1 is not the
local node, the sensor forwards the query to node1, passes whatever values that node returns to the
caller, and caches the result. When the resolution is AS-Level, the implementation uses a local BGP
feed. When the resolution is Router-Level, the implementation is a wrapper for traceroute (with
results of previous invocations cached). An implementation for resolution equal to Physical-Level
is not currently supported.
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distance ← getdistance(node, resolution): returns the distance from the local machine
to the specified node (given by IP addresses) at some resolution (possible values are the same as
for getgraph). When the resolution is AS-Level, the implementation uses a local BGP feed, and
returns the number of AS hops between the local machine and the specified node. When the resolu-
tion is Router-Level, the implementation is a wrapper for traceroute (with results of previous
invocations cached for one hour), and the sensor returns the number of router hops between the local
machine and the specified node. When the resolution is Physical-Level, the implementation is a
wrapper for ping (with results of previous invocations cached for one hour), and the sensor returns
the round-trip time between the local machine and the specified node.

path ← iproute(node): returns the sequence of routers between the local machine and the speci-
fied node (given by an IP address). Implemented as a wrapper for traceroute.

time ← iplatency(node): returns the round-trip time between the local machine and the specified
node (given by an IP address). Implemented as a wrapper for ping.

The first three sensors export an abstract interface that overlays can use to learn about the topology of the
Internet at multiple levels of resolution. These three sensors are designed to support a particular class of
applications—service overlays that implement their own routing strategy—that must pay attention to the
cost of probing the Internet []. Notice that sometimes these sensors depend on the underlying commands
ping and traceroute, the results of which may be cached from a previous reading. In contrast, the last
two sensors provide a low-level interface to these same to commands. We expect them to be used by other
applications that require the most recent data possible, but probe the Internet so rarely that cost is not a
concern.

8 Design Guidelines for Sensors

Gradually, we’ll get some more experience writing and using sensors. At the moment, a few guidelines
come to mind:

Avoid data abstraction. When building a sensor, you don’t know in general what someone on the side of
the planet will want to do with your data in 12 months time. Consequently, avoid “cleaning” the data
in any way or imposing some abstraction or aggregation on it as much as possible - that’s something
clients will want to do themselves and in ways you can’t predict. It also makes it easier to write the
sensor if you avoid transforming the data any more than strictly necessary.

Don’t implement a streaming sensor if a snapshot will do. It’s harder to build a streaming sensor: it needs
to handle multiple connections, and consequently has to have some way to bound this and get out of
trouble when it has too many clients. While there are data sources which can only usefully be provided
as a stream, many can given in snapshot form, sometimes as a circular buffer of recent history.

Don’t hammer snapshot sensors. When building a client to a sensor, don’t repeatedly poll it in a tight
loop, and show some restraint in when to request data. Since snapshot sensors return data immediately,
your query processor can wait until a query comes it before asking the sensor. If the query rate is very
high, consider caching the sensor results in the client. A truly robust sensor will have some notions of
rate limiting and fairness builtin, but well-written clients should not assume this.

8



D
R

A
FT

A HTTP Header Fields for Sensor Servers and Clients

A.1 Client Request Header Fields

Table 1 lists the required and recommended client request header fields. Next, Table 2 lists fields which
may appear in a client request but that are ignored by sensor servers. The use of these fields is discouraged;
however, these fields may be generated by browsers (during debugging of servers) or by third-party libraries
and not be under the direct control of client developer. Finally, Table 3 lists fields that should never occur in
client requests. Requests that include these header fields will receive an error response.

Header Field Use Notes

Request-Line required
Servers only implement the GET and HEAD methods.
Servers receiving other methods will return status 405
(Method Not Allowed).

Host required
Must be of the form: “Host: 127.0.0.1:port”. If
omitted or incorrect, servers will return status 400 (Bad
Request).

Connection recommended
Sensor servers do not implement persistent connections;
clients should send “Connection: close”

User-Agent recommended Indicates client name and version.

Table 1: Required and Recommended Client Request Header Fields

Accept Content-MD5 Last-Modified

Accept-Charset Content-Range Max-Forwards

Accept-Encoding Content-Type Pragma

Accept-Language Date Proxy-Authorization

Allow Expires Referer

Authorization From TE

Cache-Control If-Match Trailer

Content-Encoding If-Modified-Since Transfer-Encoding

Content-Language If-None-Match Upgrade

Content-Length If-Range Via

Content-Location If-Unmodified-Since Warning

Table 2: Client request header fields that are ignored by servers.

Header Field Use Notes

Expect no
Servers respond with status status 417 (Expectation
Failed).

Range no
Servers respond with status status 416 (Requested range
not satisfiable).

Table 3: Forbidden Client Request Header Fields
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A.2 Server Response Header Fields

Table 4 lists the required and recommended server response header fields. Next, Table 5 lists fields that
should not be sent by sensor servers and should be ignored by clients. Finally, Table 6 lists fields that should
never occur in server responses. Responses that include these header fields should be rejected by the client.

Header Field Use Notes

Status-Line required
Content-Length required Only used when there is a non-chunked body.

Content-Type required

Only used when there is a body. The only types a client
may support are:
text/plain; charset=iso-8859-1

text/xml; charset=utf-8

application/octet-stream

Date required
Last-Modified recommended

Accept-Ranges recommended
Servers need not support ranges and should include
“Accept-Ranges: none” in their responses.

Connection recommended
Sensor servers do not implement persistent connections
and should include “Connection: close” in their re-
sponses.

Server recommended Indicates name/version of server

Transfer-Encoding see notes
Use “Transfer-Encoding: chunked” for streaming
sensors.

Content-Range see notes
Ranges are not supported. This field is only sent as
“Content-Range: *” in response to a client request
containing a Range field.

Allow see notes
Required in a status 405 (Method Not Allowed) response
“Allow: GET, HEAD”; otherwise optional

Table 4: Required and Recommended Server Response Header Fields

Age Content-MD5 Upgrade

Cache-Control ETag Vary

Content-Encoding Expires Via

Content-Language Pragma Warning

Content-Location Retry-After

Table 5: Server response header fields that are ignored by clients.

B CSV Format for Sensor Servers and Clients

Because there seems to be no official standard for CSV (comma separated value) files, we describe the
recommended format for sensor servers and clients here.
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Header Field Use Notes

Location no Clients should ignore response
Proxy-Authenticate no Clients should ignore response
Trailer no Clients should ignore response
WWW-Authenticate no Clients should ignore response

Table 6: Forbidden Server Response Header Fields

A CSV-formatted file is a text file where each line is a record consisting of one or more fields separated by
commas. Blanks lines and comments lines (indicated by a # character in the first column) are ignored.

Fields that contain commas, quotes, spaces, or control characters, must be quoted using the same format as
a string in the C programming language.

Here is an example CSV file:

# Comment line
field1,23.45,"Field 3",42
"A field with commas, \"quotes,\" and control characters\t!",2,x,43
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